Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte.

نویسندگان

  • Sang Do Sung
  • Iseul Lim
  • Paul Kang
  • Chongmu Lee
  • Wan In Lee
چکیده

PbS quantum dot-sensitized solar cells (QDSCs) with a photovoltaic conversion efficiency (η) of 5.73% have been fabricated by applying Au/CuS/FTO as a counter electrode (CE), post-annealing the deposited PbS QDs, and introducing the bilayered TiO2 nanostructure as a photoanode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells

CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...

متن کامل

Restricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films

The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...

متن کامل

A microwave synthesized CuxS and graphene oxide nanoribbon composite as a highly efficient counter electrode for quantum dot sensitized solar cells.

To boost the photoconversion efficiency (PCE) of ever promising quantum dot sensitized solar cells (QDSSCs), and to improve the design of photoanodes, the ability of the counter electrode (CE) to effectively reduce the oxidized electrolyte needs special attention. A composite of a 15 wt% graphene oxide nanoribbon (GOR), obtained by unzipping multi-walled carbon nanotubes (MWCNTs), and CuxS inte...

متن کامل

Improving the performance of colloidal quantum-dot-sensitized solar cells.

Solar cells based on a mesoporous structure of TiO2 and the polysulfide redox electrolyte were prepared by direct adsorption of colloidal CdSe quantum dot light absorbers onto the oxide without any particular linker. Several factors cooperate to improve the performance of quantum-dot-sensitized solar cells: an open structure of the wide bandgap electron collector, which facilitates a higher cov...

متن کامل

Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays

Narrow bandgap PbS nanoparticles, which may expand the light absorption range to the near-infrared region, were deposited on TiO2 nanorod arrays by successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The thicknesses of PbS nanoparticles were optimized to enhance the photovoltaic performance of PbS QDSCs. A uniform CdS layer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 49 54  شماره 

صفحات  -

تاریخ انتشار 2013